How can robot machine learning be realized with RoboDK API?-SAT0001-06-01-2023
I would like to use RoboDK and Simumatik to do reinforcement learning for industrial robots. The following blog mentions RoboDK for robotic machine learning: //www.sinclairbody.com/blog/robodk-api-robot-machine-learning/ For example, I want to modify the following Python script and apply it to RoboDK.https://github.com/danijar/dreamerv3
Is it possible to import these Python scripts in RoboDK?
RE: How can robot machine learning be realized with RoboDK API?-Sam-06-01-2023
You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model. //www.sinclairbody.com/doc/en/PythonAPI/index.html
RE: How can robot machine learning be realized with RoboDK API?-SAT0001-06-04-2023
(06-01-2023, 11:50 AM)Sam Wrote:You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model.
//www.sinclairbody.com/doc/en/PythonAPI/index.html
OK,I am planning to try the following script. Please let me know if anything is wrong.
Code:
import os import numpy as np import gym from gym import spaces import robodk from robodk.robodk import Mat 进口雷 from ray import tune from ray.tune import CLIReporter from ray.tune.schedulers import ASHAScheduler import mlflow import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision import transforms from PIL import Image from ray.rllib.agents.ppo import PPOTrainer
# Define the RoboDK environment class RoboDKEnv(gym.Env): def __init__(self, config): self.robodk = robodk.Robolink() self.robot = self.robodk.Item('Kuka iiwa') self.camera = self.robodk.Item('Camera') self.target = self.robodk.Item('Target') self.action_space = spaces.Discrete(6) self.observation_space = spaces.Box(low=0, high=255, shape=(3, 224, 224), dtype=np.uint8)
def reset(self): self.robot.MoveJ(self.target) img = self.capture_image() return img
def step(self, action): # Define the action space for the robot action_space = [ (10, 0, 0, 0, 0, 0), (-10, 0, 0, 0, 0, 0), (0, 10, 0, 0, 0, 0), (0, -10, 0, 0, 0, 0), (0, 0, 10, 0, 0, 0), (0, 0, -10, 0, 0, 0), ]
# Execute the selected action self.robot.MoveJ(self.robot.Pose() * robodk.transl(*action_space[action]))
# Capture the image after the action img = self.capture_image()
# Calculate the reward based on the distance to the target distance_to_target = self.robot.Pose().dist(self.target.Pose()) reward = -distance_to_target
# Check if the robot has reached the target done = distance_to_target < 10
return img, reward, done, {}
def render(self, mode='human'): # Update the RoboDK simulator view self.robodk.Render()
def capture_image(self): img = self.camera.CaptureImage() img = Image.fromarray(img) img = transforms.ToTensor()(img) return img
# Main function if __name__ == "__main__": ray.init()
config = { "env": RoboDKEnv, "num_workers": 31, "num_gpus": 2, "num_cpus_per_worker": 1, "framework": "torch", "lr": tune.loguniform(1e-4, 1e-1), “train_batch_size”:1000年, "sgd_minibatch_size": 128, "num_sgd_iter": 10, "rollout_fragment_length": 200, "model": { "custom_model": "ppo_model", "custom_model_config": { "num_actions": 6, }, }, }
scheduler = ASHAScheduler( metric="episode_reward_mean", mode="max", max_t=100, grace_period=10, reduction_factor=2, )
reporter = CLIReporter(metric_columns=["episode_reward_mean", "training_iteration"])
result = tune.run( PPOTrainer, resources_per_trial={"cpu": 32, "gpu": 2}, config=config, num_samples=32, scheduler=scheduler, progress_reporter=reporter, )
best_trial = result.get_best_trial("episode_reward_mean", "max", "last") print(f"Best trial config: {best_trial.config}") print(f"Best trial final episode reward mean: {best_trial.last_result['episode_reward_mean']}")
best_checkpoint_dir = best_trial.checkpoint.value best_agent = PPOTrainer(config=best_trial.config, env=RoboDKEnv) best_agent.restore(best_checkpoint_dir)
# Save the trained model torch.save(best_agent.get_policy().model.state_dict(), "best_model.pth")
This script sets up a reinforcement learning environment using the RoboDK API to control a Kuka iiwa multi-axis robot. The goal is to train the robot to efficiently grasp a target object detected by a camera attached to the robot's hand, move it to a target point, and place it on the target point. The script uses the following components:
- RoboDKEnv: A custom gym environment class that interfaces with the RoboDK simulator. It defines the action and observation spaces, as well as the step,reset,render, and capture_image functions.
- step function: The robot control logic is implemented in the step function. It defines the action space for the robot, executes the selected action, captures the image after the action, calculates the reward based on the distance to the target, and checks if the robot has reached the target.
- capture_image function: Captures an image using the camera attached to the robot's hand and converts it to a PyTorch tensor.
- render function: Updates the RoboDK simulator view to visualize the robot's movements.
- PPOTrainer: The script uses the Proximal Policy Optimization (PPO) algorithm from the Ray RLlib library to train the reinforcement learning agent.
- Training configuration: The configuration for the PPOTrainer includes the number of workers, GPUs, CPUs per worker, learning rate, batch sizes, and model configuration.
- ASHAScheduler: The Asynchronous Successive Halving Algorithm (ASHA) scheduler is used to optimize the training process by early stopping of low-performing trials.
- CLIReporter: A command-line reporter is used to display the training progress, including the episode reward mean and training iteration.
- Training loop: The script runs the PPOTrainer with the specified configuration, number of samples, scheduler, and progress reporter. It logs the training progress using mlflow and saves the best model.
RE: How can robot machine learning be realized with RoboDK API?-SAT0001-07-14-2023
(06-01-2023, 11:50 AM)Sam Wrote:You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model.
//www.sinclairbody.com/doc/en/PythonAPI/index.html
It seems that multiple projects cannot be processed in parallel on RoboDK. Is it possible to achieve that with the RoboDK API?
RE: How can robot machine learning be realized with RoboDK API?-Albert-07-14-2023
You can have multiple instances of the API connection running in parallel. But one instance of RoboDK can process only one request at a time.
To speed up processing on RoboDK's end you can open multiple instances of RoboDK, using different API ports, and have different connections from the RoboDK API.
RE: How can robot machine learning be realized with RoboDK API?-dylangouw-07-17-2023
(06-04-2023, 02:15 PM)SAT0001 Wrote:
(06-01-2023, 11:50 AM)Sam Wrote:You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model.
//www.sinclairbody.com/doc/en/PythonAPI/index.html
OK,I am planning to try the following script. Please let me know if anything is wrong.
Code:
import os import numpy as np import gym from gym import spaces import robodk from robodk.robodk import Mat 进口雷 from ray import tune from ray.tune import CLIReporter from ray.tune.schedulers import ASHAScheduler import mlflow import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision import transforms from PIL import Image from ray.rllib.agents.ppo import PPOTrainer
# Define the RoboDK environment class RoboDKEnv(gym.Env): def __init__(self, config): self.robodk = robodk.Robolink() self.robot = self.robodk.Item('Kuka iiwa') self.camera = self.robodk.Item('Camera') self.target = self.robodk.Item('Target') self.action_space = spaces.Discrete(6) self.observation_space = spaces.Box(low=0, high=255, shape=(3, 224, 224), dtype=np.uint8)
def reset(self): self.robot.MoveJ(self.target) img = self.capture_image() return img
def step(self, action): # Define the action space for the robot action_space = [ (10, 0, 0, 0, 0, 0), (-10, 0, 0, 0, 0, 0), (0, 10, 0, 0, 0, 0), (0, -10, 0, 0, 0, 0), (0, 0, 10, 0, 0, 0), (0, 0, -10, 0, 0, 0), ]
# Execute the selected action self.robot.MoveJ(self.robot.Pose() * robodk.transl(*action_space[action]))
# Capture the image after the action img = self.capture_image()
# Calculate the reward based on the distance to the target distance_to_target = self.robot.Pose().dist(self.target.Pose()) reward = -distance_to_target
# Check if the robot has reached the target done = distance_to_target < 10
return img, reward, done, {}
def render(self, mode='human'): # Update the RoboDK simulator view self.robodk.Render()
def capture_image(self): img = self.camera.CaptureImage() img = Image.fromarray(img) img = transforms.ToTensor()(img) return img
# Main function if __name__ == "__main__": ray.init()
config = { "env": RoboDKEnv, "num_workers": 31, "num_gpus": 2, "num_cpus_per_worker": 1, "framework": "torch", "lr": tune.loguniform(1e-4, 1e-1), “train_batch_size”:1000年, "sgd_minibatch_size": 128, "num_sgd_iter": 10, "rollout_fragment_length": 200, "model": { "custom_model": "ppo_model", "custom_model_config": { "num_actions": 6, }, }, }
scheduler = ASHAScheduler( metric="episode_reward_mean", mode="max", max_t=100, grace_period=10, reduction_factor=2, )
reporter = CLIReporter(metric_columns=["episode_reward_mean", "training_iteration"])
result = tune.run( PPOTrainer, resources_per_trial={"cpu": 32, "gpu": 2}, config=config, num_samples=32, scheduler=scheduler, progress_reporter=reporter, )
best_trial = result.get_best_trial("episode_reward_mean", "max", "last") print(f"Best trial config: {best_trial.config}") print(f"Best trial final episode reward mean: {best_trial.last_result['episode_reward_mean']}")
best_checkpoint_dir = best_trial.checkpoint.value best_agent = PPOTrainer(config=best_trial.config, env=RoboDKEnv) best_agent.restore(best_checkpoint_dir)
# Save the trained model torch.save(best_agent.get_policy().model.state_dict(), "best_model.pth")
This script sets up a reinforcement learning environment using the RoboDK API to control a Kuka iiwa multi-axis robot. The goal is to train the robot to efficiently grasp a target object detected by a camera attached to the robot's hand, move it to a target point, and place it on the target point. The script uses the following components:
- RoboDKEnv: A custom gym environment class that interfaces with the RoboDK simulator. It defines the action and observation spaces, as well as the step,reset,render, and capture_image functions.
- step function: The robot control logic is implemented in the step function. It defines the action space for the robot, executes the selected action, captures the image after the action, calculates the reward based on the distance to the target, and checks if the robot has reached the target.
- capture_image function: Captures an image using the camera attached to the robot's hand and converts it to a PyTorch tensor.
- render function: Updates the RoboDK simulator view to visualize the robot's movements.
- PPOTrainer: The script uses the Proximal Policy Optimization (PPO) algorithm from the Ray RLlib library to train the reinforcement learning agent.
- Training configuration: The configuration for the PPOTrainer includes the number of workers, GPUs, CPUs per worker, learning rate, batch sizes, and model configuration.
- ASHAScheduler: The Asynchronous Successive Halving Algorithm (ASHA) scheduler is used to optimize the training process by early stopping of low-performing trials.
- CLIReporter: A command-line reporter is used to display the training progress, including the episode reward mean and training iteration.
- Training loop: The script runs the PPOTrainer with the specified configuration, number of samples, scheduler, and progress reporter. It logs the training progress using mlflow and saves the best model.
Did you get this code to run? I am looking for a gym environment for RoboDK to run a NAF-algorithm on. I guess I could use your code to do so by replacing the PPOtrainer with the NAF-agent
Kind regards, Dylan
RE: How can robot machine learning be realized with RoboDK API?-SAT0001-07-19-2023
(07-14-2023, 08:21 AM)Albert Wrote:You can have multiple instances of the API connection running in parallel. But one instance of RoboDK can process only one request at a time.
To speed up processing on RoboDK's end you can open multiple instances of RoboDK, using different API ports, and have different connections from the RoboDK API. I was able to run it with the code below. The code below is an excerpt. But I will ask again because the initialization of the camera does not go well.
Code:
# Initialize Robolink with the specified API port self.RDK = Robolink(args=["-PORT=" + str(self.api_port)]) self.project_directory = os.path.abspath(os.path.dirname(__file__)) self.RDK.AddFile(os.path.join(self.project_directory, f"./rdk/Conveying{self.env_no}.rdk"))
----------------------------------------------------------------------------
class RoboDKEnv(gym.Env):
def __init__(self, config): self.env_no = config.worker_index self.api_port = 20500 + self.env_no try: self.controller = RoboController.remote(env_no=self.env_no, api_port=self.api_port) except Exception as e: raise Exception(f"Failed to create controller: {e}") self.controller_initialized = True print(f"Controller initialized for worker {self.env_no} on port {self.api_port}")
(07-17-2023, 07:10 PM)dylangouw Wrote:
(06-04-2023, 02:15 PM)SAT0001 Wrote:
(06-01-2023, 11:50 AM)Sam Wrote:You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model.
//www.sinclairbody.com/doc/en/PythonAPI/index.html
OK,I am planning to try the following script. Please let me know if anything is wrong.
Code:
import os import numpy as np import gym from gym import spaces import robodk from robodk.robodk import Mat 进口雷 from ray import tune from ray.tune import CLIReporter from ray.tune.schedulers import ASHAScheduler import mlflow import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision import transforms from PIL import Image from ray.rllib.agents.ppo import PPOTrainer
# Define the RoboDK environment class RoboDKEnv(gym.Env): def __init__(self, config): self.robodk = robodk.Robolink() self.robot = self.robodk.Item('Kuka iiwa') self.camera = self.robodk.Item('Camera') self.target = self.robodk.Item('Target') self.action_space = spaces.Discrete(6) self.observation_space = spaces.Box(low=0, high=255, shape=(3, 224, 224), dtype=np.uint8)
def reset(self): self.robot.MoveJ(self.target) img = self.capture_image() return img
def step(self, action): # Define the action space for the robot action_space = [ (10, 0, 0, 0, 0, 0), (-10, 0, 0, 0, 0, 0), (0, 10, 0, 0, 0, 0), (0, -10, 0, 0, 0, 0), (0, 0, 10, 0, 0, 0), (0, 0, -10, 0, 0, 0), ]
# Execute the selected action self.robot.MoveJ(self.robot.Pose() * robodk.transl(*action_space[action]))
# Capture the image after the action img = self.capture_image()
# Calculate the reward based on the distance to the target distance_to_target = self.robot.Pose().dist(self.target.Pose()) reward = -distance_to_target
# Check if the robot has reached the target done = distance_to_target < 10
return img, reward, done, {}
def render(self, mode='human'): # Update the RoboDK simulator view self.robodk.Render()
def capture_image(self): img = self.camera.CaptureImage() img = Image.fromarray(img) img = transforms.ToTensor()(img) return img
# Main function if __name__ == "__main__": ray.init()
config = { "env": RoboDKEnv, "num_workers": 31, "num_gpus": 2, "num_cpus_per_worker": 1, "framework": "torch", "lr": tune.loguniform(1e-4, 1e-1), “train_batch_size”:1000年, "sgd_minibatch_size": 128, "num_sgd_iter": 10, "rollout_fragment_length": 200, "model": { "custom_model": "ppo_model", "custom_model_config": { "num_actions": 6, }, }, }
scheduler = ASHAScheduler( metric="episode_reward_mean", mode="max", max_t=100, grace_period=10, reduction_factor=2, )
reporter = CLIReporter(metric_columns=["episode_reward_mean", "training_iteration"])
result = tune.run( PPOTrainer, resources_per_trial={"cpu": 32, "gpu": 2}, config=config, num_samples=32, scheduler=scheduler, progress_reporter=reporter, )
best_trial = result.get_best_trial("episode_reward_mean", "max", "last") print(f"Best trial config: {best_trial.config}") print(f"Best trial final episode reward mean: {best_trial.last_result['episode_reward_mean']}")
best_checkpoint_dir = best_trial.checkpoint.value best_agent = PPOTrainer(config=best_trial.config, env=RoboDKEnv) best_agent.restore(best_checkpoint_dir)
# Save the trained model torch.save(best_agent.get_policy().model.state_dict(), "best_model.pth")
This script sets up a reinforcement learning environment using the RoboDK API to control a Kuka iiwa multi-axis robot. The goal is to train the robot to efficiently grasp a target object detected by a camera attached to the robot's hand, move it to a target point, and place it on the target point. The script uses the following components:
- RoboDKEnv: A custom gym environment class that interfaces with the RoboDK simulator. It defines the action and observation spaces, as well as the step,reset,render, and capture_image functions.
- step function: The robot control logic is implemented in the step function. It defines the action space for the robot, executes the selected action, captures the image after the action, calculates the reward based on the distance to the target, and checks if the robot has reached the target.
- capture_image function: Captures an image using the camera attached to the robot's hand and converts it to a PyTorch tensor.
- render function: Updates the RoboDK simulator view to visualize the robot's movements.
- PPOTrainer: The script uses the Proximal Policy Optimization (PPO) algorithm from the Ray RLlib library to train the reinforcement learning agent.
- Training configuration: The configuration for the PPOTrainer includes the number of workers, GPUs, CPUs per worker, learning rate, batch sizes, and model configuration.
- ASHAScheduler: The Asynchronous Successive Halving Algorithm (ASHA) scheduler is used to optimize the training process by early stopping of low-performing trials.
- CLIReporter: A command-line reporter is used to display the training progress, including the episode reward mean and training iteration.
- Training loop: The script runs the PPOTrainer with the specified configuration, number of samples, scheduler, and progress reporter. It logs the training progress using mlflow and saves the best model.
Did you get this code to run? I am looking for a gym environment for RoboDK to run a NAF-algorithm on. I guess I could use your code to do so by replacing the PPOtrainer with the NAF-agent
Kind regards, Dylan That script is meant as a summary. I didn't create a script based on it.I am modifying the RoboDK sample. It's not finished yet, but I think the script below will be helpful for you.
Code:
# this script name is "train.py"
import os import sys import random import argparse import time import pickle
import gymnasium as gym from gymnasium.spaces import Discrete, Box from gymnasium.spaces import Dict as GymDict from collections import OrderedDict
import numpy as np import cv2 as cv 进口雷 from ray import air, tune from ray.tune import Callback from ray.rllib.env.env_context import EnvContext from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.test_utils import check_learning_achieved from ray.tune.logger import pretty_print from ray.tune.registry import get_trainable_cls from ray.tune.registry import register_env from ray.air.integrations.mlflow import MLflowLoggerCallback from ray.air import RunConfig from ray.air import ScalingConfig
from controller import RoboController, IMAGE_H, IMAGE_W
from torch_model_handler import ModelHandler from MoveConveyor import RoboDKMoveConveyor from PartsToConveyor import RoboDKToConveyor, NUM_PARTS from PartsToPallet import RoboDKToPallet
import mlflow
DEBUG_MODE = False
DISPLAY_IMAGE = True NUM_WORKERS = 3 NUM_CPUS_PER_WORKER = 1 NUM_GPUS = 1 TIME_LIMIT = 16.0
WINDOW_NAME = 'SICK VSPP-5F2113' MAX_W, MAX_H = IMAGE_W * 3.0, IMAGE_H * 3.0 # mm
APPROACH = 100 # define default approach distance SENSOR_VARIABLE = 'SENSOR' # station variable
torch, nn = try_import_torch()
class RoboDKEnv(gym.Env):
def __init__(self, config): self.env_no = config.worker_index self.api_port = 20500 + self.env_no try: self.controller = RoboController.remote(env_no=self.env_no, api_port=self.api_port) except Exception as e: raise Exception(f"Failed to create controller: {e}") self.controller_initialized = True print(f"Controller initialized for worker {self.env_no} on port {self.api_port}") sys.stdout.flush() ray.get(self.controller.initialize_conv.remote()) ray.get(self.controller.initialize_robotA.remote()) ray.get(self.controller.initialize_robotB.remote()) ray.get(self.controller.initialize_parts.remote()) ray.get(self.controller.initialize_camera.remote()) self.conveyor = RoboDKMoveConveyor.remote(self.controller) self.robot_conv = RoboDKToConveyor.remote(self.controller) self.robot_pallet = RoboDKToPallet.remote(self.controller) self.conveyor_run_task = None self.robot_conv_run_task = None # self.projects_info = ray.get(self.controller.get_projects_info.remote()) self.image = None self.background_img = None self.action_space = GymDict({ "pred_CAM_TX": Box(low=0, high=MAX_W, shape=(1,)), "pred_CAM_TY": Box(low=0, high=MAX_H, shape=(1,)), "pred_CAM_RZ": Box(low=-181, high=181, shape=(1,)), }) self.observation_space = GymDict({ "image": Box(low=0, high=255, shape=(IMAGE_H, IMAGE_W, 3), dtype=np.uint8), }) self.part_position = 0, 0, 0 self.target_no = NUM_PARTS self.reward = 0.0 self.reward_position = 0.0 self.reward_posture = 0.0 self.terminated = False self.truncated = False self.random_policy_data = [] self.start_time = time.time() self.time_limit = TIME_LIMIT self.episode_time = 0.0 self.keys = [] self.step_called = False self.reset(seed=config.worker_index * config.num_workers)
def reset(self, *, seed=None, options=None): print("Reset method called") random.seed(seed) self.conveyor_run_task = None self.robot_conv_run_task = None # ray.get(self.robot_conv.reset_object.remote()) self.start_time = time.time() # Start time for the episode self.terminated = False self.truncated = False self.target_no = NUM_PARTS self.episode_time = 0.0 self.random_policy_data = [] self.keys = [] ray.get(self.controller.initialize_conv.remote()) ray.get(self.controller.initialize_robotA.remote()) ray.get(self.controller.initialize_robotB.remote()) ray.get(self.controller.initialize_parts.remote()) try: # Move the robot to the target_inspect position ray.get(self.controller.move_inspect.remote('robotB')) self.background_img = ray.get(self.controller.get_image.remote())
if self.background_img is None: self.background_img = np.zeros((IMAGE_H, IMAGE_W, 3)) self.observation = OrderedDict([ ('image', self.background_img), ]) return self.observation, {} except Exception as e: print(f"Error in reset(): {e}") raise
def step(self, action): # Run the conveyor if self.conveyor_run_task==None: if self.conveyor is None: print("conveyor is not initialized") else: try: self.conveyor_run_task = self.conveyor.run.remote() print("conveyor run task is running") except Exception as e: print(f"Error when trying to start conveyor: {e}")
if self.robot_conv_run_task==None: if self.robot_conv is None: print("robot_conv is not initialized") else: try: self.robot_conv_run_task = self.robot_conv.run.remote() print("Robot conv run task is running") except Exception as e: print(f"Error when trying to start conveyor: {e}")
# Define weights for position and orientation errors weight_position = 1.0 weight_orientation = 0.1 # Capture the target data gt_CAM_TX, gt_CAM_TY, gt_CAM_RZ, self.image = ray.get(self.controller.get_target.remote(self.target_no)) # self.episode_time = time.time() - self.start_time # self.terminated = self.check_terminated() if self.image is None: self.image = np.zeros((IMAGE_H, IMAGE_W, 3)) else: self.target_no += -1
# Use the CNN model to predict CAM_TX, CAM_TY, and CAM_RZ from the image pred_CAM_TX, pred_CAM_TY, pred_CAM_RZ = action["pred_CAM_TX"], action["pred_CAM_TY"], action["pred_CAM_RZ"]
# Calculate the reward based on the difference between predicted and ground truth values position_diff = np.linalg.norm(np.array([pred_CAM_TX, pred_CAM_TY]) - np.array([gt_CAM_TX, gt_CAM_TY])).item() posture_diff = np.abs(pred_CAM_RZ - gt_CAM_RZ).item() # Set the desired accuracy for position and orientation position_accuracy = 15 # +/- 15mm posture_accuracy = 10 * np.pi / 180 # +/- 10 degrees (converted to radians) # Calculate the reward based on the accuracy self.reward_position = float(self.reward_function(position_diff, 0, position_accuracy)) self.reward_posture = float(self.reward_function(posture_diff, 0, posture_accuracy)) self.reward = weight_position * self.reward_position + weight_orientation * self.reward_posture # Check if the episode is terminated (you can define your own termination condition) self.terminated = self.check_terminated() self.truncated = self.terminated self.observation = OrderedDict([ ("image", self.image), # 4D array for image ]) info = {} # Return the next state, reward, terminated, truncated and any additional information return self.observation, self.reward, self.terminated, self.truncated, info
def reward_function(自我, pred, gt, threshold): diff = np.abs(pred - gt) if diff <= threshold: return 1.0 else: return -np.square(diff - threshold) / 100.0
def render(self): cv.imshow(WINDOW_NAME + f"_{self.env_no}", self.image) cv.waitKey(0)
def predict_values(self, image): # Convert the image to grayscale gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) # Apply a threshold to separate the objects from the background _, thresholded = cv.threshold(gray, 127, 255, cv.THRESH_BINARY) # Find contours in the thresholded image contours, _ = cv.findContours(thresholded, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # Calculate the area of each contour and find the largest one largest_contour = max(contours, key=cv.contourArea) # Get the bounding rectangle of the largest contour x, y, w, h = cv.boundingRect(largest_contour) # Crop the image to the bounding rectangle cropped_image = image[y:y + h, x:x + w] # Convert the cropped image to a PyTorch tensor image_tensor = torch.from_numpy(cropped_image).float().unsqueeze(0).to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) # Predict the position and orientation data using the trained model with torch.no_grad(): output = self.model(image_tensor) # Extract the predicted position and orientation data CAM_TX, CAM_TY, CAM_RZ = output[0].item(), output[1].item(), output[2].item()
return CAM_TX, CAM_TY, CAM_RZ
def check_terminated(self): # Check if all objects have been captured if self.target_no == 0: print("check_terminated 1") return True # Check if both reward_position and reward_posture are 1 elif self.reward_position==1 and self.reward_posture==1: print("check_terminated 2") return True elif self.robot_conv.get_status.remote()=="COMPLETED": print("check_terminated 4 - PartsToConveyor completed") return True else: return False
def random_policy(self, num_steps): for _ in range(num_steps): action = self.action_space.sample() observation, reward, terminated, info = self.step(action) self.random_policy_data.append((observation, action, reward, terminated)) if terminated: self.reset()
return self.random_policy_data
@staticmethod def arg_parser(): parser = argparse.ArgumentParser() 解析器。add_argument("--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.") 解析器。add_argument(“框架”,选择=[“特遣部队”,"tf2", "torch"], default="torch", help="The DL framework specifier.") 解析器。add_argument("--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must be achieved within --stop-timesteps AND --stop-iters.") 解析器。add_argument("--stop-iters", type=int, default=5, help="Number of iterations to train.") 解析器。add_argument("--stop-timesteps", type=int, default=100000, help="Number of timesteps to train.") 解析器。add_argument("--stop-reward", type=float, default=0.1, help="Reward at which we stop training.") 解析器。add_argument("--no-tune", action="store_true", help="Run without Tune using a manual train loop instead. In this case, use PPO without grid search and no TensorBoard.") 解析器。add_argument("--local-mode", action="store_true", help="Init Ray in local mode for easier debugging.") return parser
def get_config(args): config = ( get_trainable_cls(args.run) .get_default_config() .environment("RoboDKEnv") .framework(args.framework) .rollouts(num_rollout_workers=NUM_WORKERS) .training( model={ “conv_filters”:( [32, [3, 3], 1], [64, [3, 3], 1], [128, [3, 3], 1], ], } ) ) return config
def env_creator(config: EnvContext) -> RoboDKEnv: print(f"---------------Creating RoboDKEnv instance for worker {config.worker_index}") return RoboDKEnv(config)
if __name__ == "__main__": with open('status.txt', 'w') as status_file: status_file.write('RUNNING')
try: parser = RoboDKEnv.arg_parser() args = parser.parse_args() print(f"Running with following CLI options: {args}")
os.environ["RAY_PDB"] = "1" ray.init(ignore_reinit_error=True, local_mode=DEBUG_MODE)
config = get_config(args) register_env("RoboDKEnv", lambda config: env_creator(config))
stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, }
results = None if args.no_tune: if args.run != "PPO": raise ValueError("Only support --run PPO with --no-tune.") print("Running manual train loop without Ray Tune.") config.lr = 1e-3 algo = config.build()
for _ in range(args.stop_iters): result = algo.train() print(pretty_print(result)) if ( result["timesteps_total"] >= args.stop_timesteps or result["episode_reward_mean"] >= args.stop_reward ): break algo.stop() else: print("Training automatically with Ray Tune") run_config = RunConfig( # Use RunConfig from ray.air stop=stop, name="mlflow_example", callbacks=[ MLflowLoggerCallback( tracking_uri="./mlruns", experiment_name="example", save_artifact=True, ) ], )
tuner = tune.Tuner( args.run, param_space=config.to_dict(), run_config=run_config, )
结果= tuner.fit () print("tuner.fit")
如果args.as_test: print("Checking if learning goals were achieved") check_learning_achieved(results, args.stop_reward)
if results: with open('tuning_results.pkl', 'wb') as f: pickle.dump(results, f)
ray.shutdown()
except Exception as e: print(f"Exception occurred: {e}") with open('status.txt', 'w') as status_file: status_file.write('FAILED')
finally: with open('status.txt', 'w') as status_file: status_file.write('COMPLETED')
I used the following as a reference.
https://github.com/ray-project/ray/blob/master/rllib/examples/custom_env.py
RE: How can robot machine learning be realized with RoboDK API?-SAT0001-07-19-2023
(07-14-2023, 08:21 AM)Albert Wrote:You can have multiple instances of the API connection running in parallel. But one instance of RoboDK can process only one request at a time.
To speed up processing on RoboDK's end you can open multiple instances of RoboDK, using different API ports, and have different connections from the RoboDK API. Same RoboDK item number despite being members of different instances (这里是‘94825226266192’)是正常的吗?我想作为sign one camera to each of Conveying1, Conveying2 and Conveying3, but all cameras are assigned to Conveying1.
Code:
class RoboDKEnv(gym.Env): def __init__(self, config): self.env_no = config.worker_index self.api_port = 20500 + self.env_no try: self.controller = RoboController.remote(env_no=self.env_no, api_port=self.api_port) except Exception as e: raise Exception(f"Failed to create controller: {e}") self.controller_initialized = True print(f"Controller initialized for worker {self.env_no} on port {self.api_port}")
ray.get(self.controller.initialize_camera.remote())
class RoboController: def initialize_camera(self): self.RDK.Cam2D_Close() self.camref = self.RDK.Item(project_info["camera_ref_name"], ITEM_TYPE_FRAME) print("---self.camref:", self.camref) self.cam_item = self.RDK.Cam2D_Add(self.camref, 'FOCAL_LENGHT=6 FOV=32 FAR_LENGHT=1000 SIZE=640x480 BG_COLOR=black LIGHT_AMBIENT=white LIGHT_DIFFUSE=black LIGHT_SPECULAR=white') print("---self.cam_item:", self.cam_item) self.cam_item.setParam('Open', 1)
---------------------------------
- output (RoboController pid=3651698) ---self.camref: RoboDK item (94825226266192) of type 3(a member of Conveying2) (RoboController pid=3651695) ---self.camref: RoboDK item (94825226266192) of type 3(a member of Conveying3) (RoboController pid=3651713) ---self.camref: RoboDK item (94825226266192) of type 3(a member of Conveying1)
(RoboController pid=3651698) ---self.cam_item: RoboDK item (94825140747968) of type 19(Conveying1 on RoboDK project) (RoboController pid=3651695) ---self.cam_item: RoboDK item (94825131911184) of type 19(Conveying1 on RoboDK project) (RoboController pid=3651713) ---self.cam_item: RoboDK item (94825132525520) of type 19(Conveying1 on RoboDK project)
RE: How can robot machine learning be realized with RoboDK API?-SAT0001-07-20-2023
(07-14-2023, 08:21 AM)Albert Wrote:You can have multiple instances of the API connection running in parallel. But one instance of RoboDK can process only one request at a time.
To speed up processing on RoboDK's end you can open multiple instances of RoboDK, using different API ports, and have different connections from the RoboDK API. I thought in RoboDK version 5.6, working on multiple projects in parallel within a single RoboDK window is possible. But, it seems that is not possible. RoboDK is designed to work with one project at a time within a single window. However, I can open multiple instances of RoboDK, each with a different project loaded, and work on them in parallel.
It is a request, please make it possible even with a single RoboDK window.Running multiple instances of RoboDK might consume more system resources, potentially affecting the performance of my computer.
RE: How can robot machine learning be realized with RoboDK API?-Albert-07-20-2023
You should be able to do both:
- Use one instance of RoboDK with multiple API connections (multiple instances of robolink). When you use the same instance of RoboDK, item pointers are exactly the same.
- Multiple instances of RoboDK running with one or more API connections each. Make sure you start RoboDK using the -NEWINSTANCE command line option so you open a new instance of RoboDK.
|