Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5

How can robot machine learning be realized with RoboDK API?

#1
I would like to use RoboDK and Simumatik to do reinforcement learning for industrial robots. The following blog mentions RoboDK for robotic machine learning:
//www.sinclairbody.com/blog/robodk-api-robot...-learning/
For example, I want to modify the following Python script and apply it to RoboDK.https://github.com/danijar/dreamerv3

Is it possible to import these Python scripts in RoboDK?
#2
You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model.
//www.sinclairbody.com/doc/en/PythonAPI/index.html
Please read theForum Guidelinesbefore posting!
Find useful information about RoboDK by visiting our2022世界杯32强赛程表时间 .
#3
(06-01-2023, 11:50 AM)Sam Wrote:You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model.
//www.sinclairbody.com/doc/en/PythonAPI/index.html
OK,I am planning to try the following script. Please let me know if anything is wrong.

Code:
import os
import numpy as np
import gym
from gym import spaces
import robodk
from robodk.robodk import Mat
import ray
from ray import tune
from ray.tune import CLIReporter
from ray.tune.schedulers import ASHAScheduler
import mlflow
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import transforms
from PIL import Image
from ray.rllib.agents.ppo import PPOTrainer

# Define the RoboDK environment
class RoboDKEnv(gym.Env):
def __init__(self, config):
自我。robodk = robodk.Robolink()
自我。robot = self.robodk.Item('Kuka iiwa')
自我。camera = self.robodk.Item('Camera')
自我。target = self.robodk.Item('Target')
自我。action_space = spaces.Discrete(6)
自我。observation_space = spaces.Box(low=0, high=255, shape=(3, 224, 224), dtype=np.uint8)

def reset(self):
自我。robot.MoveJ(self.target)
img = self.capture_image()
return img

def step(self, action):
# Define the action space for the robot
action_space = [
(10, 0, 0, 0, 0, 0),
(-10, 0, 0, 0, 0, 0),
(0, 10, 0, 0, 0, 0),
(0, -10, 0, 0, 0, 0),
(0, 0, 10, 0, 0, 0),
(0, 0, -10, 0, 0, 0),
]

# Execute the selected action
自我。robot.MoveJ(self.robot.Pose() * robodk.transl(*action_space[action]))

# Capture the image after the action
img = self.capture_image()

# Calculate the reward based on the distance to the target
distance_to_target = self.robot.Pose().dist(self.target.Pose())
reward = -distance_to_target

# Check if the robot has reached the target
done = distance_to_target < 10

return img, reward, done, {}

def render(self, mode='human'):
# Update the RoboDK simulator view
自我。robodk.Render()

def capture_image(self):
img = self.camera.CaptureImage()
img = Image.fromarray(img)
img = transforms.ToTensor()(img)
return img

# Main function
if __name__ == "__main__":
ray.init()

config = {
"env": RoboDKEnv,
"num_workers": 31,
"num_gpus": 2,
"num_cpus_per_worker": 1,
"framework": "torch",
"lr": tune.loguniform(1e-4, 1e-1),
"train_batch_size": 1000,
"sgd_minibatch_size": 128,
"num_sgd_iter": 10,
"rollout_fragment_length": 200,
"model": {
"custom_model": "ppo_model",
"custom_model_config": {
"num_actions": 6,
},
},
}

scheduler = ASHAScheduler(
metric="episode_reward_mean",
模式=“max”,
max_t=100,
grace_period=10,
reduction_factor=2,
)

reporter = CLIReporter(metric_columns=["episode_reward_mean", "training_iteration"])

result = tune.run(
PPOTrainer,
resources_per_trial={"cpu": 32, "gpu": 2},
config=config,
num_samples=32,
scheduler=scheduler,
progress_reporter=reporter,
)

best_trial = result.get_best_trial("episode_reward_mean", "max", "last")
print(f"Best trial config: {best_trial.config}")
print(f"Best trial final episode reward mean: {best_trial.last_result['episode_reward_mean']}")

best_checkpoint_dir = best_trial.checkpoint.value
best_agent = PPOTrainer(config=best_trial.config, env=RoboDKEnv)
best_agent.restore(best_checkpoint_dir)

# Save the trained model
torch.save(best_agent.get_policy().model.state_dict(), "best_model.pth")

This script sets up a reinforcement learning environment using the RoboDK API to control a Kuka iiwa multi-axis robot. The goal is to train the robot to efficiently grasp a target object detected by a camera attached to the robot's hand, move it to a target point, and place it on the target point. The script uses the following components:

- RoboDKEnv: A custom gym environment class that interfaces with the RoboDK simulator. It defines the action and observation spaces, as well as the step,reset,render, and capture_image functions.

- step function: The robot control logic is implemented in the step function. It defines the action space for the robot, executes the selected action, captures the image after the action, calculates the reward based on the distance to the target, and checks if the robot has reached the target.

- capture_image function: Captures an image using the camera attached to the robot's hand and converts it to a PyTorch tensor.

- render function: Updates the RoboDK simulator view to visualize the robot's movements.

- PPOTrainer: The script uses the Proximal Policy Optimization (PPO) algorithm from the Ray RLlib library to train the reinforcement learning agent.

- Training configuration: The configuration for the PPOTrainer includes the number of workers, GPUs, CPUs per worker, learning rate, batch sizes, and model configuration.

连续- ASHAScheduler:异步Halving Algorithm (ASHA) scheduler is used to optimize the training process by early stopping of low-performing trials.

- CLIReporter: A command-line reporter is used to display the training progress, including the episode reward mean and training iteration.

- Training loop: The script runs the PPOTrainer with the specified configuration, number of samples, scheduler, and progress reporter. It logs the training progress using mlflow and saves the best model.
#4
(06-01-2023, 11:50 AM)Sam Wrote:You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model.
//www.sinclairbody.com/doc/en/PythonAPI/index.html

It seems that multiple projects cannot be processed in parallel on RoboDK. Is it possible to achieve that with the RoboDK API?
#5
You can have multiple instances of the API connection running in parallel. But one instance of RoboDK can process only one request at a time.

To speed up processing on RoboDK's end you can open multiple instances of RoboDK, using different API ports, and have different connections from the RoboDK API.
#6
(06-04-2023, 02:15 PM)SAT0001 Wrote:
(06-01-2023, 11:50 AM)Sam Wrote:You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model.
//www.sinclairbody.com/doc/en/PythonAPI/index.html
OK,I am planning to try the following script. Please let me know if anything is wrong.

Code:
import os
import numpy as np
import gym
from gym import spaces
import robodk
from robodk.robodk import Mat
import ray
from ray import tune
from ray.tune import CLIReporter
from ray.tune.schedulers import ASHAScheduler
import mlflow
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import transforms
from PIL import Image
from ray.rllib.agents.ppo import PPOTrainer

# Define the RoboDK environment
class RoboDKEnv(gym.Env):
def __init__(self, config):
自我。robodk = robodk.Robolink()
自我。robot = self.robodk.Item('Kuka iiwa')
自我。camera = self.robodk.Item('Camera')
自我。target = self.robodk.Item('Target')
自我。action_space = spaces.Discrete(6)
自我。observation_space = spaces.Box(low=0, high=255, shape=(3, 224, 224), dtype=np.uint8)

def reset(self):
自我。robot.MoveJ(self.target)
img = self.capture_image()
return img

def step(self, action):
# Define the action space for the robot
action_space = [
(10, 0, 0, 0, 0, 0),
(-10, 0, 0, 0, 0, 0),
(0, 10, 0, 0, 0, 0),
(0, -10, 0, 0, 0, 0),
(0, 0, 10, 0, 0, 0),
(0, 0, -10, 0, 0, 0),
]

# Execute the selected action
自我。robot.MoveJ(self.robot.Pose() * robodk.transl(*action_space[action]))

# Capture the image after the action
img = self.capture_image()

# Calculate the reward based on the distance to the target
distance_to_target = self.robot.Pose().dist(self.target.Pose())
reward = -distance_to_target

# Check if the robot has reached the target
done = distance_to_target < 10

return img, reward, done, {}

def render(self, mode='human'):
# Update the RoboDK simulator view
自我。robodk.Render()

def capture_image(self):
img = self.camera.CaptureImage()
img = Image.fromarray(img)
img = transforms.ToTensor()(img)
return img

# Main function
if __name__ == "__main__":
ray.init()

config = {
"env": RoboDKEnv,
"num_workers": 31,
"num_gpus": 2,
"num_cpus_per_worker": 1,
"framework": "torch",
"lr": tune.loguniform(1e-4, 1e-1),
"train_batch_size": 1000,
"sgd_minibatch_size": 128,
"num_sgd_iter": 10,
"rollout_fragment_length": 200,
"model": {
"custom_model": "ppo_model",
"custom_model_config": {
"num_actions": 6,
},
},
}

scheduler = ASHAScheduler(
metric="episode_reward_mean",
模式=“max”,
max_t=100,
grace_period=10,
reduction_factor=2,
)

reporter = CLIReporter(metric_columns=["episode_reward_mean", "training_iteration"])

result = tune.run(
PPOTrainer,
resources_per_trial={"cpu": 32, "gpu": 2},
config=config,
num_samples=32,
scheduler=scheduler,
progress_reporter=reporter,
)

best_trial = result.get_best_trial("episode_reward_mean", "max", "last")
print(f"Best trial config: {best_trial.config}")
print(f"Best trial final episode reward mean: {best_trial.last_result['episode_reward_mean']}")

best_checkpoint_dir = best_trial.checkpoint.value
best_agent = PPOTrainer(config=best_trial.config, env=RoboDKEnv)
best_agent.restore(best_checkpoint_dir)

# Save the trained model
torch.save(best_agent.get_policy().model.state_dict(), "best_model.pth")

This script sets up a reinforcement learning environment using the RoboDK API to control a Kuka iiwa multi-axis robot. The goal is to train the robot to efficiently grasp a target object detected by a camera attached to the robot's hand, move it to a target point, and place it on the target point. The script uses the following components:

- RoboDKEnv: A custom gym environment class that interfaces with the RoboDK simulator. It defines the action and observation spaces, as well as the step,reset,render, and capture_image functions.

- step function: The robot control logic is implemented in the step function. It defines the action space for the robot, executes the selected action, captures the image after the action, calculates the reward based on the distance to the target, and checks if the robot has reached the target.

- capture_image function: Captures an image using the camera attached to the robot's hand and converts it to a PyTorch tensor.

- render function: Updates the RoboDK simulator view to visualize the robot's movements.

- PPOTrainer: The script uses the Proximal Policy Optimization (PPO) algorithm from the Ray RLlib library to train the reinforcement learning agent.

- Training configuration: The configuration for the PPOTrainer includes the number of workers, GPUs, CPUs per worker, learning rate, batch sizes, and model configuration.

连续- ASHAScheduler:异步Halving Algorithm (ASHA) scheduler is used to optimize the training process by early stopping of low-performing trials.

- CLIReporter: A command-line reporter is used to display the training progress, including the episode reward mean and training iteration.

- Training loop: The script runs the PPOTrainer with the specified configuration, number of samples, scheduler, and progress reporter. It logs the training progress using mlflow and saves the best model.

Did you get this code to run? I am looking for a gym environment for RoboDK to run a NAF-algorithm on. I guess I could use your code to do so by replacing the PPOtrainer with the NAF-agent

Kind regards,
Dylan
#7
(07-14-2023, 08:21 AM)Albert Wrote:You can have multiple instances of the API connection running in parallel. But one instance of RoboDK can process only one request at a time.

To speed up processing on RoboDK's end you can open multiple instances of RoboDK, using different API ports, and have different connections from the RoboDK API.

I was able to run it with the code below.
The code below is an excerpt.
But I will ask again because the initialization of the camera does not go well.

Code:
# Initialize Robolink with the specified API port
自我。RDK = Robolink(args=["-PORT=" + str(self.api_port)])
自我。project_directory = os.path.abspath(os.path.dirname(__file__))
self.RDK.AddFile (os.path.join (self.project_directory, f"./rdk/Conveying{self.env_no}.rdk"))

----------------------------------------------------------------------------

class RoboDKEnv(gym.Env):

def __init__(self, config):
自我。env_no = config.worker_index
自我。api_port = 20500 + self.env_no
try:
自我。controller = RoboController.remote(env_no=self.env_no, api_port=self.api_port)
except Exception as e:
raise Exception(f"Failed to create controller: {e}")
自我。controller_initialized = True
print(f"Controller initialized for worker {self.env_no} on port {self.api_port}")

(07-17-2023, 07:10 PM)dylangouw Wrote:
(06-04-2023, 02:15 PM)SAT0001 Wrote:
(06-01-2023, 11:50 AM)Sam Wrote:You can directly interface with RoboDK using our Python API to retrieive the required inputs for your model.
//www.sinclairbody.com/doc/en/PythonAPI/index.html
OK,I am planning to try the following script. Please let me know if anything is wrong.

Code:
import os
import numpy as np
import gym
from gym import spaces
import robodk
from robodk.robodk import Mat
import ray
from ray import tune
from ray.tune import CLIReporter
from ray.tune.schedulers import ASHAScheduler
import mlflow
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import transforms
from PIL import Image
from ray.rllib.agents.ppo import PPOTrainer

# Define the RoboDK environment
class RoboDKEnv(gym.Env):
def __init__(self, config):
自我。robodk = robodk.Robolink()
自我。robot = self.robodk.Item('Kuka iiwa')
自我。camera = self.robodk.Item('Camera')
自我。target = self.robodk.Item('Target')
自我。action_space = spaces.Discrete(6)
自我。observation_space = spaces.Box(low=0, high=255, shape=(3, 224, 224), dtype=np.uint8)

def reset(self):
自我。robot.MoveJ(self.target)
img = self.capture_image()
return img

def step(self, action):
# Define the action space for the robot
action_space = [
(10, 0, 0, 0, 0, 0),
(-10, 0, 0, 0, 0, 0),
(0, 10, 0, 0, 0, 0),
(0, -10, 0, 0, 0, 0),
(0, 0, 10, 0, 0, 0),
(0, 0, -10, 0, 0, 0),
]

# Execute the selected action
自我。robot.MoveJ(self.robot.Pose() * robodk.transl(*action_space[action]))

# Capture the image after the action
img = self.capture_image()

# Calculate the reward based on the distance to the target
distance_to_target = self.robot.Pose().dist(self.target.Pose())
reward = -distance_to_target

# Check if the robot has reached the target
done = distance_to_target < 10

return img, reward, done, {}

def render(self, mode='human'):
# Update the RoboDK simulator view
自我。robodk.Render()

def capture_image(self):
img = self.camera.CaptureImage()
img = Image.fromarray(img)
img = transforms.ToTensor()(img)
return img

# Main function
if __name__ == "__main__":
ray.init()

config = {
"env": RoboDKEnv,
"num_workers": 31,
"num_gpus": 2,
"num_cpus_per_worker": 1,
"framework": "torch",
"lr": tune.loguniform(1e-4, 1e-1),
"train_batch_size": 1000,
"sgd_minibatch_size": 128,
"num_sgd_iter": 10,
"rollout_fragment_length": 200,
"model": {
"custom_model": "ppo_model",
"custom_model_config": {
"num_actions": 6,
},
},
}

scheduler = ASHAScheduler(
metric="episode_reward_mean",
模式=“max”,
max_t=100,
grace_period=10,
reduction_factor=2,
)

reporter = CLIReporter(metric_columns=["episode_reward_mean", "training_iteration"])

result = tune.run(
PPOTrainer,
resources_per_trial={"cpu": 32, "gpu": 2},
config=config,
num_samples=32,
scheduler=scheduler,
progress_reporter=reporter,
)

best_trial = result.get_best_trial("episode_reward_mean", "max", "last")
print(f"Best trial config: {best_trial.config}")
print(f"Best trial final episode reward mean: {best_trial.last_result['episode_reward_mean']}")

best_checkpoint_dir = best_trial.checkpoint.value
best_agent = PPOTrainer(config=best_trial.config, env=RoboDKEnv)
best_agent.restore(best_checkpoint_dir)

# Save the trained model
torch.save(best_agent.get_policy().model.state_dict(), "best_model.pth")

This script sets up a reinforcement learning environment using the RoboDK API to control a Kuka iiwa multi-axis robot. The goal is to train the robot to efficiently grasp a target object detected by a camera attached to the robot's hand, move it to a target point, and place it on the target point. The script uses the following components:

- RoboDKEnv: A custom gym environment class that interfaces with the RoboDK simulator. It defines the action and observation spaces, as well as the step,reset,render, and capture_image functions.

- step function: The robot control logic is implemented in the step function. It defines the action space for the robot, executes the selected action, captures the image after the action, calculates the reward based on the distance to the target, and checks if the robot has reached the target.

- capture_image function: Captures an image using the camera attached to the robot's hand and converts it to a PyTorch tensor.

- render function: Updates the RoboDK simulator view to visualize the robot's movements.

- PPOTrainer: The script uses the Proximal Policy Optimization (PPO) algorithm from the Ray RLlib library to train the reinforcement learning agent.

- Training configuration: The configuration for the PPOTrainer includes the number of workers, GPUs, CPUs per worker, learning rate, batch sizes, and model configuration.

连续- ASHAScheduler:异步Halving Algorithm (ASHA) scheduler is used to optimize the training process by early stopping of low-performing trials.

- CLIReporter: A command-line reporter is used to display the training progress, including the episode reward mean and training iteration.

- Training loop: The script runs the PPOTrainer with the specified configuration, number of samples, scheduler, and progress reporter. It logs the training progress using mlflow and saves the best model.

Did you get this code to run? I am looking for a gym environment for RoboDK to run a NAF-algorithm on. I guess I could use your code to do so by replacing the PPOtrainer with the NAF-agent

Kind regards,
Dylan
That script is meant as a summary. I didn't create a script based on it.I am modifying the RoboDK sample. It's not finished yet, but I think the script below will be helpful for you.

Code:
# this script name is "train.py"

import os
import sys
import random
import argparse
import time
import pickle

import gymnasium as gym
from gymnasium.spaces import Discrete, Box
from gymnasium.spaces import Dict as GymDict
from collections import OrderedDict

import numpy as np
import cv2 as cv
import ray
from ray import air, tune
from ray.tune import Callback
from ray.rllib.env.env_context import EnvContext
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.test_utils import check_learning_achieved
from ray.tune.logger import pretty_print
from ray.tune.registry import get_trainable_cls
from ray.tune.registry import register_env
from ray.air.integrations.mlflow import MLflowLoggerCallback
from ray.air import RunConfig
from ray.air import ScalingConfig

from controller import RoboController, IMAGE_H, IMAGE_W

from torch_model_handler import ModelHandler
from MoveConveyor import RoboDKMoveConveyor
from PartsToConveyor import RoboDKToConveyor, NUM_PARTS
from PartsToPallet import RoboDKToPallet

import mlflow


DEBUG_MODE = False

DISPLAY_IMAGE = True
NUM_WORKERS = 3
NUM_CPUS_PER_WORKER = 1
NUM_GPUS = 1
TIME_LIMIT = 16.0

WINDOW_NAME = 'SICK VSPP-5F2113'
MAX_W, MAX_H = IMAGE_W * 3.0, IMAGE_H * 3.0 # mm

APPROACH = 100 # define default approach distance
SENSOR_VARIABLE = 'SENSOR' # station variable

torch, nn = try_import_torch()

class RoboDKEnv(gym.Env):

def __init__(self, config):
自我。env_no = config.worker_index
自我。api_port = 20500 + self.env_no
try:
自我。controller = RoboController.remote(env_no=self.env_no, api_port=self.api_port)
except Exception as e:
raise Exception(f"Failed to create controller: {e}")
自我。controller_initialized = True
print(f"Controller initialized for worker {self.env_no} on port {self.api_port}")
sys.stdout.flush()
ray.get(self.controller.initialize_conv.remote())
ray.get(self.controller.initialize_robotA.remote())
ray.get(self.controller.initialize_robotB.remote())
ray.get(self.controller.initialize_parts.remote())
ray.get(self.controller.initialize_camera.remote())
自我。conveyor = RoboDKMoveConveyor.remote(self.controller)
自我。robot_conv = RoboDKToConveyor.remote(self.controller)
自我。robot_pallet = RoboDKToPallet.remote(self.controller)
自我。conveyor_run_task = None
自我。robot_conv_run_task = None
# self.projects_info = ray.get(self.controller.get_projects_info.remote())
自我。image = None
自我。background_img = None
自我。action_space = GymDict({
"pred_CAM_TX": Box(low=0, high=MAX_W, shape=(1,)),
"pred_CAM_TY": Box(low=0, high=MAX_H, shape=(1,)),
"pred_CAM_RZ": Box(low=-181, high=181, shape=(1,)),
})
自我。observation_space = GymDict({
"image": Box(low=0, high=255, shape=(IMAGE_H, IMAGE_W, 3), dtype=np.uint8),
})
自我。part_position = 0, 0, 0
自我。target_no = NUM_PARTS
自我。reward = 0.0
自我。reward_position = 0.0
自我。reward_posture = 0.0
自我。terminated = False
自我。截断= False
自我。random_policy_data = []
自我。start_time = time.time()
自我。time_limit = TIME_LIMIT
自我。episode_time = 0.0
自我。keys = []
自我。step_called = False
自我。reset(seed=config.worker_index * config.num_workers)

def reset(self, *, seed=None, options=None):
print("Reset method called")
random.seed(seed)
自我。conveyor_run_task = None
自我。robot_conv_run_task = None
# ray.get(self.robot_conv.reset_object.remote())
自我。start_time = time.time() # Start time for the episode
自我。terminated = False
自我。截断= False
自我。target_no = NUM_PARTS
自我。episode_time = 0.0
自我。random_policy_data = []
自我。keys = []
ray.get(self.controller.initialize_conv.remote())
ray.get(self.controller.initialize_robotA.remote())
ray.get(self.controller.initialize_robotB.remote())
ray.get(self.controller.initialize_parts.remote())
try:
# Move the robot to the target_inspect position
ray.get(self.controller.move_inspect.remote('robotB'))
自我。background_img = ray.get(self.controller.get_image.remote())

if self.background_img is None:
自我。background_img = np.zeros((IMAGE_H, IMAGE_W, 3))
自我。observation = OrderedDict([
('image', self.background_img),
])
return self.observation, {}
except Exception as e:
print(f"Error in reset(): {e}")
raise

def step(self, action):
# Run the conveyor
if self.conveyor_run_task==None:
if self.conveyor is None:
print("conveyor is not initialized")
else:
try:
自我。conveyor_run_task = self.conveyor.run.remote()
print("conveyor run task is running")
except Exception as e:
print(f"Error when trying to start conveyor: {e}")

if self.robot_conv_run_task==None:
if self.robot_conv is None:
print("robot_conv is not initialized")
else:
try:
自我。robot_conv_run_task = self.robot_conv.run.remote()
print("Robot conv run task is running")
except Exception as e:
print(f"Error when trying to start conveyor: {e}")

# Define weights for position and orientation errors
weight_position = 1.0
weight_orientation = 0.1
# Capture the target data
gt_CAM_TX, gt_CAM_TY, gt_CAM_RZ, self.image = ray.get(self.controller.get_target.remote(self.target_no))
# self.episode_time = time.time() - self.start_time
# self.terminated = self.check_terminated()
if self.image is None:
自我。image = np.zeros((IMAGE_H, IMAGE_W, 3))
else:
自我。target_no += -1

# Use the CNN model to predict CAM_TX, CAM_TY, and CAM_RZ from the image
pred_CAM_TX, pred_CAM_TY, pred_CAM_RZ = action["pred_CAM_TX"], action["pred_CAM_TY"], action["pred_CAM_RZ"]

# Calculate the reward based on the difference between predicted and ground truth values
position_diff = np.linalg.norm(np.array([pred_CAM_TX, pred_CAM_TY]) - np.array([gt_CAM_TX, gt_CAM_TY])).item()
posture_diff = np.abs(pred_CAM_RZ - gt_CAM_RZ).item()
# Set the desired accuracy for position and orientation
position_accuracy = 15 # +/- 15mm
posture_accuracy = 10 * np.pi / 180 # +/- 10 degrees (converted to radians)
# Calculate the reward based on the accuracy
自我。reward_position = float(self.reward_function(position_diff, 0, position_accuracy))
自我。reward_posture = float(self.reward_function(posture_diff, 0, posture_accuracy))
自我。reward = weight_position * self.reward_position + weight_orientation * self.reward_posture
# Check if the episode is terminated (you can define your own termination condition)
自我。terminated = self.check_terminated()
自我。truncated = self.terminated
自我。observation = OrderedDict([
("image", self.image), # 4D array for image
])
info = {}
# Return the next state, reward, terminated, truncated and any additional information
return self.observation, self.reward, self.terminated, self.truncated, info

def reward_function(self, pred, gt, threshold):
diff = np.abs(pred - gt)
if diff <= threshold:
return 1.0
else:
return -np.square(diff - threshold) / 100.0

def render(self):
cv.imshow(WINDOW_NAME + f"_{self.env_no}", self.image)
cv.waitKey(0)

def predict_values(self, image):
# Convert the image to grayscale
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# Apply a threshold to separate the objects from the background
_, thresholded = cv.threshold(gray, 127, 255, cv.THRESH_BINARY)
# Find contours in the thresholded image
contours, _ = cv.findContours(thresholded, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# Calculate the area of each contour and find the largest one
largest_contour = max(contours, key=cv.contourArea)
# Get the bounding rectangle of the largest contour
x, y, w, h = cv.boundingRect(largest_contour)
# Crop the image to the bounding rectangle
cropped_image = image[y:y + h, x:x + w]
# Convert the cropped image to a PyTorch tensor
image_tensor = torch.from_numpy(cropped_image).float().unsqueeze(0).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
# Predict the position and orientation data using the trained model
with torch.no_grad():
output = self.model(image_tensor)
# Extract the predicted position and orientation data
CAM_TX, CAM_TY, CAM_RZ = output[0].item(), output[1].item(), output[2].item()

return CAM_TX, CAM_TY, CAM_RZ

def check_terminated(self):
# Check if all objects have been captured
if self.target_no == 0:
print("check_terminated 1")
return True
# Check if both reward_position and reward_posture are 1
elif self.reward_position==1 and self.reward_posture==1:
print("check_terminated 2")
return True
elif self.robot_conv.get_status.remote()=="COMPLETED":
print("check_terminated 4 - PartsToConveyor completed")
return True
else:
return False

def random_policy(self, num_steps):
for _ in range(num_steps):
action = self.action_space.sample()
observation, reward, terminated, info = self.step(action)
自我。random_policy_data.append((observation, action, reward, terminated))
if terminated:
自我。reset()

return self.random_policy_data

@staticmethod
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.")
parser.add_argument("--framework", choices=["tf", "tf2", "torch"], default="torch",
help="The DL framework specifier.")
parser.add_argument("--as-test", action="store_true",
help="Whether this script should be run as a test: --stop-reward must be achieved within --stop-timesteps AND --stop-iters.")
parser.add_argument("--stop-iters", type=int, default=5, help="Number of iterations to train.")
parser.add_argument("--stop-timesteps", type=int, default=100000, help="Number of timesteps to train.")
parser.add_argument("--stop-reward", type=float, default=0.1, help="Reward at which we stop training.")
parser.add_argument("--no-tune", action="store_true",
help="Run without Tune using a manual train loop instead. In this case, use PPO without grid search and no TensorBoard.")
parser.add_argument("--local-mode", action="store_true", help="Init Ray in local mode for easier debugging.")
return parser

def get_config(args):
config = (
get_trainable_cls(args.run)
.get_default_config()
.environment("RoboDKEnv")
.framework (arg游戏.framework)
.rollouts(num_rollout_workers=NUM_WORKERS)
.training(
model={
“conv_filters”:(
[32, [3, 3], 1],
[64, [3, 3], 1],
[128, [3, 3], 1],
],
}
)
)
return config

def env_creator(config: EnvContext) -> RoboDKEnv:
print(f"---------------Creating RoboDKEnv instance for worker {config.worker_index}")
return RoboDKEnv(config)


if __name__ == "__main__":
with open('status.txt', 'w') as status_file:
status_file.write('RUNNING')

try:
parser = RoboDKEnv.arg_parser()
args = parser.parse_args()
print(f"Running with following CLI options: {args}")

os.environ["RAY_PDB"] = "1"
ray.init(ignore_reinit_error=True, local_mode=DEBUG_MODE)

config = get_config(args)
register_env("RoboDKEnv", lambda config: env_creator(config))

stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
“episode_reward_mean”:args.stop_reward,
}

results = None
if args.no_tune:
if args.run != "PPO":
raise ValueError("Only support --run PPO with --no-tune.")
print("Running manual train loop without Ray Tune.")
config.lr = 1e-3
algo = config.build()

for _ in range(args.stop_iters):
result = algo.train()
print(pretty_print(result))
if (
result["timesteps_total"] >= args.stop_timesteps
or result["episode_reward_mean"] >= args.stop_reward
):
break
algo.stop()
else:
print("Training automatically with Ray Tune")
run_config = RunConfig( # Use RunConfig from ray.air
stop=stop,
name="mlflow_example",
callbacks=[
MLflowLoggerCallback(
tracking_uri="./mlruns",
experiment_name="example",
save_artifact=True,
)
],
)

tuner = tune.Tuner(
args.run,
param_space=config.to_dict(),
run_config=run_config,
)

results = tuner.fit()
print("tuner.fit")

if args.as_test:
print("Checking if learning goals were achieved")
check_learning_achieved(results, args.stop_reward)

if results:
with open('tuning_results.pkl', 'wb') as f:
pickle.dump(results, f)

ray.shutdown()

except Exception as e:
print(f"Exception occurred: {e}")
with open('status.txt', 'w') as status_file:
status_file.write('FAILED')

finally:
with open('status.txt', 'w') as status_file:
status_file.write('COMPLETED')

I used the following as a reference.

https://github.com/ray-project/ray/blob/...tom_env.py
#8
(07-14-2023, 08:21 AM)Albert Wrote:You can have multiple instances of the API connection running in parallel. But one instance of RoboDK can process only one request at a time.

To speed up processing on RoboDK's end you can open multiple instances of RoboDK, using different API ports, and have different connections from the RoboDK API.
Same RoboDK item number despite being members of different instances
(here '94825226266192') is it normal? I want to assign one camera to each of Conveying1, Conveying2 and Conveying3, but all cameras are assigned to Conveying1.

Code:
class RoboDKEnv(gym.Env):
def __init__(self, config):
自我。env_no = config.worker_index
自我。api_port = 20500 + self.env_no
try:
自我。controller = RoboController.remote(env_no=self.env_no, api_port=self.api_port)
except Exception as e:
raise Exception(f"Failed to create controller: {e}")
自我。controller_initialized = True
print(f"Controller initialized for worker {self.env_no} on port {self.api_port}")

ray.get(self.controller.initialize_camera.remote())


class RoboController:
def initialize_camera(self):
自我。RDK.Cam2D_Close()
自我。camref = self.RDK.Item(project_info["camera_ref_name"], ITEM_TYPE_FRAME)
print("---self.camref:", self.camref)
自我。cam_item = self.RDK.Cam2D_Add(self.camref, 'FOCAL_LENGHT=6 FOV=32 FAR_LENGHT=1000 SIZE=640x480 BG_COLOR=black LIGHT_AMBIENT=white LIGHT_DIFFUSE=black LIGHT_SPECULAR=white')
print("---self.cam_item:", self.cam_item)
自我。cam_item.setParam('Open', 1)



---------------------------------

- output
(RoboController pid=3651698) ---self.camref: RoboDK item (94825226266192) of type 3(a member of Conveying2)
(RoboController pid=3651695) ---self.camref: RoboDK item (94825226266192) of type 3(a member of Conveying3)
(RoboController pid=3651713) ---self.camref: RoboDK item (94825226266192) of type 3(a member of Conveying1)

(RoboController pid=3651698) ---self.cam_item: RoboDK item (94825140747968) of type 19(Conveying1 on RoboDK project)
(RoboController pid=3651695) ---self.cam_item: RoboDK item (94825131911184) of type 19(Conveying1 on RoboDK project)
(RoboController pid=3651713) ---self.cam_item: RoboDK item (94825132525520) of type 19(Conveying1 on RoboDK project)
#9
(07-14-2023, 08:21 AM)Albert Wrote:You can have multiple instances of the API connection running in parallel. But one instance of RoboDK can process only one request at a time.

To speed up processing on RoboDK's end you can open multiple instances of RoboDK, using different API ports, and have different connections from the RoboDK API.

I thought in RoboDK version 5.6, working on multiple projects in parallel within a single RoboDK window is possible. But, it seems that is not possible. RoboDK is designed to work with one project at a time within a single window. However, I can open multiple instances of RoboDK, each with a different project loaded, and work on them in parallel.

It is a request, please make it possible even with a single RoboDK window.Running multiple instances of RoboDK might consume more system resources, potentially affecting the performance of my computer.
#10
You should be able to do both:
  1. Use one instance of RoboDK with multiple API connections (multiple instances of robolink). When you use the same instance of RoboDK, item pointers are exactly the same.
  2. Multiple instances of RoboDK running with one or more API connections each. Make sure you start RoboDK using the -NEWINSTANCE command line option so you open a new instance of RoboDK.




Users browsing this thread:
1客人(s)